
JSR 299: Web Beans

Web Beans Expert Group

Version: Early Draft Review

Table of Contents
1. Architecture .. 1

1.1. Contracts ... 1
1.2. Supported environments ... 1
1.3. Relationship to other specifications ... 2

1.3.1. Relationship to EJB ... 2
1.3.2. Relationship to JSF .. 2
1.3.3. Relationship to Java Servlets .. 3
1.3.4. Relationship to Common Annotations for the Java Platform 3

2. The Web Beans component model ... 4
2.1. Component types ... 5

2.1.1. Built-in component types ... 5
2.1.2. Defining new component types .. 5
2.1.3. Declaring the component type of a component using annotations 6
2.1.4. Declaring the component type of a component using XML .. 6
2.1.5. Component type enablement and precedence ... 7

2.2. Web Bean implementation class .. 7
2.2.1. Declaring an implementation class using annotations ... 7
2.2.2. Declaring an implementation class using XML .. 8
2.2.3. Component constructors .. 8
2.2.4. Component remove methods .. 9
2.2.5. Injected fields .. 9
2.2.6. Injector methods .. 10

2.3. Producer methods ... 11
2.3.1. Declaring a producer method using annotations ... 11
2.3.2. Declaring a producer method using XML .. 11
2.3.3. Producer method parameters .. 12
2.3.4. Disposal methods .. 12

2.4. Web Bean API types .. 13
2.5. Binding annotations .. 13

2.5.1. Defining binding annotations ... 13
2.5.2. Declaring the binding annotation types for a component using annotations 14
2.5.3. Declaring the binding annotation types for a component using XML 14
2.5.4. Using binding annotations on injected fields .. 15
2.5.5. Using binding annotations on method parameters .. 15
2.5.6. The @New binding annotation ... 15

2.6. Component scopes ... 15
2.6.1. Built-in scope types ... 16
2.6.2. Defining new scope types .. 16
2.6.3. Declaring the component scope using annotations ... 16
2.6.4. Declaring the component scope using XML .. 17
2.6.5. Default component scopes .. 17

2.7. Component names .. 17
2.7.1. Default component names .. 17
2.7.2. Declaring the component name using annotations .. 18
2.7.3. Declaring the component name using XML ... 18
2.7.4. Using component names in EL ... 18

2.8. XML based configuration ... 18
2.9. Additional examples ... 18

JSR-299 Early Draft Review ii

3. Injection and EL resolution ... 20
3.1. Instance resolution ... 20

3.1.1. Typesafe resolution algorithm .. 20
3.1.1.1. Binding annotations with members .. 21
3.1.1.2. Multiple binding annotations ... 21

3.1.2. Scope adaptors .. 22
3.2. EL name resolution .. 22

3.2.1. Name resolution algorithm ... 22
3.2.2. Integration with Unified EL ... 23

4. Component lifecycle .. 24
4.1. Instances of producer method components ... 24
4.2. Component creation ... 25

4.2.1. Object instantiation .. 26
4.2.1.1. Instantiating a component by calling the component constructor 26
4.2.1.2. Instantiating an EJB session bean ... 26
4.2.1.3. Instantiating a component by calling the producer method 26

4.2.2. Additional injection ... 26
4.2.3. @PostConstruct callback ... 27
4.2.4. Dependent instances .. 27

4.3. Component destruction ... 27
4.3.1. Component remove method or disposal method call .. 28

4.3.1.1. Destroying a stateful session bean instance ... 28
4.3.1.2. Disposing an instance returned by a producer method 28

4.3.2. @PreDestroy callback ... 28
4.3.3. Destruction of dependent instances ... 28

4.4. Interceptors .. 28
4.4.1. Support for @Interceptors .. 28
4.4.2. Interceptor bindings ... 29

4.4.2.1. Interceptors with multiple binding types ... 30
4.4.2.2. Interceptor binding types with members ... 30
4.4.2.3. Interceptor binding types with additional interceptor bindings 31
4.4.2.4. Declaring interceptor bindings using XML ... 31

4.4.3. Interceptor enablement and ordering ... 31
4.5. Events ... 31

4.5.1. Raising an event .. 32
4.5.2. Observer methods .. 32
4.5.3. Observer resolution ... 33

4.5.3.1. Event binding annotations with members ... 33
4.5.3.2. Multiple event binding annotations .. 34

4.5.4. Conditional observers .. 34
4.5.5. Transactional observers ... 34

5. The Web Beans context model .. 36
5.1. Contexts .. 36

5.1.1. Inactive contexts ... 37
5.1.2. Context destruction .. 37
5.1.3. Pseudo-scopes ... 37

5.2. Dependent pseudo-scope .. 37
5.3. Context management for built-in scopes .. 38

5.3.1. Request context lifecycle ... 38
5.3.2. Session context lifecycle .. 38
5.3.3. Application context lifecycle .. 38
5.3.4. Conversation context lifecycle .. 38

JSR 299: Web Beans

JSR-299 Early Draft Review iii

5.4. Context management for custom scopes ... 40
6. Transactions and persistence .. 41

6.1. Transaction management .. 41
6.2. Persistence context management ... 41

7. Validation and databinding ... 42
8. Packaging and configuration ... 43

8.1. Web Bean component discovery ... 43
8.1.1. Enabled component types ... 44
8.1.2. Component type precedence ... 44

JSR 299: Web Beans

JSR-299 Early Draft Review iv

Chapter 1. Architecture
Web Beans provides a unifying component model for Java EE by defining:

• A programming model for stateful, contextual components, where metadata may be defined using either an-
notations or XML deployment descriptors. This component model is compatible with both EJB 3.0 and
JavaBeans.

• A sophisticated, typesafe dependency injection mechanism.

• Integration with the Unified Expression Language (EL).

• Support for method and component lifecycle interceptors.

• An event notification model.

• A facility for overriding API implementations at deployment time.

• A facility for configuring components via XML.

• An extensible context model.

• A web conversation context in addition to the three standard web contexts defined by the Java Servlet spe-
cification.

• Conversation-scoped JPA extended persistence context management.

• A deployment and packaging model compatible with existing Java EE standards.

Web Beans is compatible with Java EE 5 and above.

In particular, Web Beans allows EJB 3.0 components to be used as JSF managed beans, thus unifying the the
component models of EJB and JSF and significantly simplifying the programming model when EJB and JSF
are used together.

1.1. Contracts

This specification defines the responsibilities of a user who writes an application that executes inside an envir-
onment that supports Web Beans and uses the functionality provided by Web Beans — the Web Bean applica-
tion — along with responsibilities of a vendor who implements the functionality defined by this specification
and provides a runtime environment in which Web Beans execute — the Web Beans container. Both the Web
Bean application and the Web Beans container are written to comply with Java EE contracts and may take ad-
vantage of the functionality provided by Java EE.

The Web Beans container may be provided by the Java EE container vendor as integrated functionality of the
Java EE container. Alternatively, the Web Beans container may be provided by some third-party as a plugin
Web Beans container which may be integrated into other Java EE containers.

1.2. Supported environments

All plugin Web Beans containers are required to support any Java EE 6.0 compliant container. An integrated

JSR-299 Early Draft Review 1

Web Beans container is not required to support any environment other than that in which it is integrated.

A compliant standalone Web Beans container may optionally support Java EE 5.0. Certain functionality
defined in this specification is optional when the Web Beans container executes in a Java EE 5.0 environment.
This is the case only when explicitly noted in this specification. All other functionality defined by this specific-
ation must be supported by a compliant standalone Web Beans container that supports Java EE 5.0 when it ex-
ecutes in the Java EE 5.0 environment.

1.3. Relationship to other specifications

This specification defines a complete, standalone component model. However, Web Beans lacks certain useful
functionality already defined by other specifications. In particular, Web Beans does not specify enterprise as-
pects such as declarative transaction management or declarative security. Nor does Web Beans specify any kind
of presentation or orchestration technology.

Rather, Web Beans leverages existing specifications and integrates cleanly with the functionality provided by
these specifications.

In addition, this specification defines an SPI that allows a Web Beans container to be integrated with alternative
technologies, for example other web presentation technologies.

1.3.1. Relationship to EJB

EJB defines a programming model for application components that access transactional resources in a multi-
user environment. EJB allows concerns such as role-based security, transaction demarcation, concurrency and
scalability to be specified declaratively using annotations and XML deployment descriptors and enforced by the
EJB container at runtime.

EJB components may be stateful, but are not usually contextual. References to stateful component instances
must be explicitly passed between clients and stateful instances must be explicitly destroyed by the application.

An EJB session bean may be declared as a Web Bean component. In this case, the session bean is a contextual
object. It is bound to a context and available to all components that execute in that context. When the context
ends it is automatically destroyed by the Web Beans container.

For an EJB session bean that is also a Web Bean, the EJB container provides the services defined by the EJB
specification, and the Web Beans container provides the contextual lifecycle management defined by Web
Beans. The Web Beans container integrates with the EJB container via standard EJB and Java EE APIs.

A Web Bean is not required to be an EJB.

1.3.2. Relationship to JSF

JavaServer Faces is a web-tier presentation framework that provides a component model for graphical user in-
terface components, a managed bean component model for application logic, and an event-driven interaction
model that binds the two component models. The managed bean component model is a contextual model where
managed beans are bound to one of the three web tier contexts and may hold contextual state.

Web Beans components may be used in place of JSF managed beans in a JSF application. In this case, the ap-
plication may take advantage of the more sophisticated context and component model provided by Web Beans.
Even better, the Web Beans may be EJB session beans, allowing direct use of EJB components in JSF.

Architecture

JSR-299 Early Draft Review 2

The Web Beans container integrates with JSF via standard JSF APIs.

An application that uses Web Beans need not use JSF.

1.3.3. Relationship to Java Servlets

Web Bean components may be called by a Servlet. The Web Beans container integrates with the Servlet engine
via standard APIs defined by the Java Servlets specification.

1.3.4. Relationship to Common Annotations for the Java Platform

Web Beans supports some of the functionality defined by Common Annotations for the Java Platform. For Web
Beans which are not EJB session beans, this functionality is implemented by the Web Beans container.

Architecture

JSR-299 Early Draft Review 3

Chapter 2. The Web Beans component model
A Web Bean component is a source of contextual objects which define application state and/or logic. These ob-
jects are called component instances or instances of the Web Bean. The lifecycle of a Web Bean instance is un-
der the control of the Web Beans container, which determines when the instance is created and destroyed. In-
stances of a Web Bean may be injected into other objects (including other Web Bean instances) that execute in
the same context, and may be used in EL expressions that are evaluated in the same context.

A Web Bean component comprises:

• A component type

• Either a bean implementation class or a producer method

• A set of API types

• A (possibly empty) set of binding annotation types

• A scope

• A component name

We will often write Web Bean component to explicitly distinguish the component from the implementation
class and from instances of the component. However, when not explicit, the term Web Bean should be under-
stood to mean a Web Bean component.

A Web Bean is provided by the Web Beans container with the following capabilities:

• lifecycle management and scoping to a particular Web Beans context

• scoped resolution by type and binding annotation type when injected into a Java-based client

• scoped resolution by name when used in a Unified EL expression

• automatic instantiation, when injected into a client, or used in an EL expression

• automatic injection of other Web Bean instances

• lifecycle callbacks

• method and lifecycle interception

• event notification

Open issue: should Web Beans provide concurrency control?

However, if the application directly instantiates an implementation class of a Web Bean component, instead of
letting the container perform instantiation, these capabilities will not be available to that particular class in-
stance.

If the application requires full control over instantiation of a Web Bean, the component may be defined by de-
claring a producer method that is invoked by the Web Beans container to instantiate the component. In this
case, we describe the component as a producer method component.

JSR-299 Early Draft Review 4

A Web Bean component may be defined and deployed using any one of the following mechanisms:

• annotating the bean implementation class with any component type annotation and deploying it to an
archive in the web application classpath that includes a web-beans.xml file

• explicitly declaring the component in a web-beans.xml file

• annotating a method of any other Web Bean with the @Produces annotation

• annotating an injection point of any other Web Bean with the @New annotation

See Section 8.1, “Web Bean component discovery” for further details about component discovery.

2.1. Component types

A component type allows the Web Beans container to identify which classes in the classpath are Web Bean
component implementation classes, and which components should be enabled for use in a particular deploy-
ment of the system. The component type also determines the precedence of a component.

The set of component types is extensible.

2.1.1. Built-in component types

There are two standard component types defined by Web Beans: @Component and @Standard. All standard Web
Beans components provided by the Web Beans container are defined using the @Standard component type. Ap-
plication components may be defined using the @Component component type.

2.1.2. Defining new component types

A Web Beans component type is a Java annotation defined as @Target({TYPE, METHOD}) and
@Retention(RUNTIME). All component types must also specify the @ComponentType meta-annotation.

Applications and third-party frameworks may define their own component types. For example, the following
component type might be used for components which are used only in a particular deployment of the applica-
tion:

@ComponentType
@Target({TYPE, METHOD})
@Retention(RUNTIME)
public @interface MelbourneOffice {}

This component type might be used by a third-party framework that extends Web Beans:

@ComponentType
@Target({TYPE, METHOD})
@Retention(RUNTIME)
public @interface DaoFramework {}

This component type might be used to define mock objects for integration testing:

@ComponentType
@Target({TYPE, METHOD})
@Retention(RUNTIME)
public @interface Mock {}

The Web Beans component model

JSR-299 Early Draft Review 5

2.1.3. Declaring the component type of a component using annotations

A Web Beans component type annotation may only be applied to Web Beans implementation classes or produ-
cer methods. The annotation determines the component type of the component.

A Web Bean implementation class or producer method may specify only one component type. If an implement-
ation class or producer method specifies multiple component type annotations, an exception is thrown by the
Web Beans container at initialization time.

This component has the component type @Component:

@Component
public class Order {}

This component has the component type @Mock:

@Mock
public class MockOrder extends Order {}

By default, if no component type annotation is explicitly specified, a producer method component inherits the
component type of the Web Beans component upon which it is defined.

This producer method component has the component type @Component:

@Component
public class Login {

@Produces
public User getUser() { ... }

}

This producer method component has the component type @Mock:

@Component
public class MockLogin implements Shop {

@Produces @Mock
public User getMockUser() { ... }

}

2.1.4. Declaring the component type of a component using XML

Alternatively, if the Web Beans component is declared in web-beans.xml, the component type is specified us-
ing <type>, and the implementation class need not have a component type annotation:

<component>
<class>org.mydomain.melbourne.MelbourneOrder</class>
<type>org.mydomain.melbourne.MelbourneOffice</type>

</component>

For Web Bean components declared in web-beans.xml, component type annotations appearing on the imple-
mentation class or producer method are ignored. If no component type is specified using using <type>, the
component type is assumed to be @Component.

If a Web Bean component is declared in web-beans.xml and a component type annotation appears on the bean

The Web Beans component model

JSR-299 Early Draft Review 6

implementation class or producer method, the Web Beans container assumes that two different components ex-
ist!

2.1.5. Component type enablement and precedence

In a particular deployment, only some component types are enabled. Components declared with a component
type that is not enabled are not available to the resolution algorithms defined in Chapter 3, Injection and EL
resolution.

In a particular deployment, all enabled component types are strongly ordered in terms of precedence. The pre-
cedence of a component type is used by the resolution algorithms.

By default only the @Standard and @Component component types are enabled, and @Standard has a lower pre-
cedence.

See Section 8.1.1, “Enabled component types” for more information about component type enablement.

2.2. Web Bean implementation class

A Web Bean implementation class defines the state and behavior of the Web Bean component. The implement-
ation class is a non-final, non-abstract Java class with no final methods. In particular, any EJB 3.0 session bean
class may be a Web Bean implementation class.

An inner class may not be a Web Bean implementation class.

Open issue: Web Beans should support message driven beans as Web Beans components.

Note that multiple Web Bean components may share the same implementation class. This occurs when com-
ponents are defined using XML. Only one Web Bean component per implementation class may be defined us-
ing annotations.

A subclass of a Web Bean implementation class is not, by default, the implementation class for any Web Bean
component. It must be explicitly declared as a Web Bean component (either via component type annotation,
@New or XML) if it is to be a Web Bean.

2.2.1. Declaring an implementation class using annotations

When a component is declared using annotations, the annotations are applied directly to the implementation
class.

Here are some example Web Bean implementation classes, all of the standard @Component component type:

@Component
class Shop { .. }

@Component
public class ProductList implements DataModel { ... }

@Component
class PaymentProcessorImpl implements PaymentProcessor { ... }

@Stateless
@Component
@Named("loginAction")

The Web Beans component model

JSR-299 Early Draft Review 7

public class LoginActionImpl implements LoginAction { ... }

This Web Bean is a "mock object" that overrides the implementation of LoginAction when running in an integ-
ration testing environment:

@Stateless
@Mock
@Named("loginAction")
public class LoginActionMock extends LoginActionImpl { ... }

2.2.2. Declaring an implementation class using XML

For Web Bean components declared in web-beans.xml, the implementation class is specified using the <class>

element:

<component>
<class>org.mydomain.Order</class>

</component>

2.2.3. Component constructors

When the Web Beans container instantiates a Web Bean that is not an EJB, it calls the component constructor.

• If the implementation class does not explicitly declare a constructor, the default constructor is the compon-
ent constructor.

• If the implementation class declares exactly one constructor, that constructor is the component constructor.

• If the implementation class declares more than one constructor, exactly one of these constructors must be
annotated @In or have a parameter annotated with a binding type. This constructor is the component con-
structor.

If the component constructor has parameters, the container uses the instance resolution procedure defined in
Section 3.1, “Instance resolution” to determine a value for each of the parameters and calls the constructor with
those parameter values.

@ConversationScoped @Component
public class Order {

private Product product;
private User customer;

public Order(Product product, @Current User customer)
{

this.product = product;
this.customer = customer;

}

}

If the implementation class declares multiple constructors and either:

• no constructor is annotated @In and no constructor is annotated with a binding type, or

• multiple constructors are annotated @In or have a parameter annotated with a binding type

The Web Beans component model

JSR-299 Early Draft Review 8

then an exception is thrown by the Web Beans container at initialization time.

The application may call component constructors directly. However, in this case, no parameters will be passed
to the constructor by the container; the returned object is not bound to any context; and the lifecycle of the new
instance is not managed by the Web Beans container.

2.2.4. Component remove methods

When the Web Beans container destroys an EJB stateful session bean, it calls the component remove method.

• If the implementation class declares exactly one EJB @Remove method, that remove method is the compon-
ent remove method.

• If the implementation class declares more than one EJB @Remove method, exactly one of these method must
be annotated @Destroys. This remove method is the component remove method.

If the component remove method has parameters, the container will use the instance resolution procedure to de-
termine a value for each of the parameters and call the method with those parameter values.

@ConversationScoped @Stateful @Component
public class Order {

@Remove @Destroys
public remove(Log log)
{

...
}

}

If the stateful session bean implementation class declares multiple EJB remove methods and either:

• the @Destroys annotation does not appear, or

• if multiple remove methods are annotated @Destroys

then an exception is thrown by the Web Beans container at initialization time. If the stateful session bean im-
plementation class does not declare any EJB remove method, an exception is thrown by the Web Beans con-
tainer at initialization time.

The application may call a component remove method, or any other EJB remove method directly, but in this
case no parameters will be passed to the method by the container. However, whenever any remove method of a
Web Bean component instance is called by the application, the Web Beans container must remove the instance
from the context with which it is associated.

2.2.5. Injected fields

An injected field is a non-static, non-final field of a Web Bean implementation class that is annotated with any
binding type or @In.

Injected fields are initialized by the container immediately after instantiation. The container uses the instance
resolution procedure to determine a value for each injected field.

@ConversationScoped @Component
public class Order {

The Web Beans component model

JSR-299 Early Draft Review 9

@In Product product;
@Current User customer;

}

2.2.6. Injector methods

An injector method is a non-static method of a Web Bean implementation class that:

• is annotated @In or has a parameter annotated by a binding type and

• is not annotated @Produces or @Destroys and

• does not have a parameter annotated @Disposes or @Observes.

Injector methods are called by the container immediately after injected fields have been initialized by the con-
tainer.

If the implementation class is an EJB session bean, the injector method is not required to be a business method
of the session bean.

If the injector method has parameters, the container will use the instance resolution procedure to determine a
value for each of the parameters and call the producer method with those parameter values.

@ConversationScoped @Component
public class Order {

private Product product;
private User customer;

@In void setOrder(Product product)
{

this.product = product;
}

public void setCustomer(@Current User customer)
{

this.customer = customer;
}

}

An injector method may have multiple (or zero) parameters.

@ConversationScoped @Component
public class Order {

private Product product;
private User customer;

public void init(Product product, @Current User customer)
{

this.product = product;
this.customer = customer;

}

}

A Web Bean implementation class may declare multiple (or zero) injector methods.

The Web Beans component model

JSR-299 Early Draft Review 10

The application may call injector methods directly, but in this case no parameters will be passed to the method
by the container.

2.3. Producer methods

A Web Beans producer method acts as a source of objects to be injected, where:

• the objects to be injected are not required to be instances of Web Beans components, or

• the concrete type of the objects to be injected may vary at runtime, or

• the objects to be injected may be null, or

• the objects require some custom initialization that is not performed by the component constructor.

A producer method must be a non-static method of a Web Bean. If the Web Bean implementation class is an
EJB session bean, the producer method must be a business method of the session bean.

The application may call producer methods directly. In this case no parameters will be passed to the producer
method by the container; the returned object is not bound to any context; and its lifecycle is not managed by the
Web Beans container.

A producer method may return a null value.

A component may declare multiple producer methods.

2.3.1. Declaring a producer method using annotations

A producer method is declared by annotating a method with the @Produces annotation.

@Component
@Stateless
public class ShopBean implements Shop {

@Produces
public List<Product> getProducts() { ... }

@Produces
public PaymentProcessor getPaymentProcessor() { ... }

}

2.3.2. Declaring a producer method using XML

Alternatively, a producer method may be defined in XML, by specifying a Unified EL method expression:

<web-beans>
<component>

<name>products</name>
<producer>#{shopBean.getProducts}</producer>

</component>
</web-beans>

Note that an XML-based component definition may not specify both an implementation class and a producer
method expression. If the component definition specifies a producer method expression, the component is con-

The Web Beans component model

JSR-299 Early Draft Review 11

sidered a producer method component.

2.3.3. Producer method parameters

If the producer method has parameters, the container will use the instance resolution procedure to determine a
value for each of the parameters and call the producer method with those parameter values.

@Component
public class OrderFactory {

@Produces @ConversationScoped @Current
public Order getCurrentOrder(@New Order order, @Selected Product product)
{

order.setProduct(product);
return order;

}

}

2.3.4. Disposal methods

A disposal method allows the application to perform customized cleanup of an object returned by a producer
method.

A disposal method must be a non-static method of a Web Bean. If the Web Bean is a session bean, the producer
method must be a business method of the session bean.

A disposal method must have a parameter annotated @Disposes. If this parameter resolves to a producer meth-
od component according to the typesafe resolution algorithm, the container must call this method when destroy-
ing an instance returned by that producer method.

@Component
public class CurrentEntityManager {

@Produces @Current @ConversationScoped
public EntityManager create(EntityManagerFactory emf) {

return emf.createEntityManager();
}

public void close(@Disposes @Current EntityManager em) {
em.close();

}

}

The container will use the instance resolution procedure to determine a value for each of the parameters of a
disposal method and call the disposal method with those parameter values.

Open issue: what happens when the application calls a disposal method directly? For consistency with the rule
defined for component remove method, it should remove the object from the context.

If there are multiple disposal methods that resolve to the same producer method component, an exception will
be thrown by the container at initialization time.

Open issue: this does not work well with overriding. There needs to be precedence-aware rules for this.

A component may declare multiple disposal methods.

The Web Beans component model

JSR-299 Early Draft Review 12

2.4. Web Bean API types

A Web Bean API type defines a client-visible type of the Web Bean component. A Web Bean component may
have multiple API types. The set of API types depends upon whether the Web Bean component is a producer
method component:

• If the Web Bean implementation class is not a session bean, the set of API types includes the implementa-
tion class, all superclasses and all interfaces implemented directly or indirectly.

• If the Web Bean implementation class is a session bean, the set of API types includes all local interfaces of
the session bean and their superinterfaces. Remote interfaces are not included in the set of API types.

• If the Web Bean component is a producer method component, the API types include the method return type
and all interfaces implemented directly or indirectly. If the method return type is a concrete class, the API
types also include all superclasses of the method return type.

In the examples from Section 2.2.1, “Declaring an implementation class using annotations”, the first Web Bean
has the API type Shop. The second Web Bean has the API types ProductList and DataModel. The third Web
Bean has the API types PaymentProcessorImpl and PaymentProcessor. The fourth Web Bean has the API
type LoginAction (the local interface of the stateless session bean).

An API type may be a parameterized type with an actual type parameter. For the purposes of the typesafe resol-
ution algorithm, API types with are considered the identical by the Web Beans container only if both the type
and the type parameters (if any) are identical. However, API types may not declare a type variable or wildcard.

Open issue: is this too restrictive? We should probably support API types with a type variable, considering
them a match for any injection point which specifies an actual type for the variable.

2.5. Binding annotations

For a given API type, there may be multiple Web Bean components which implement the type. In this case, the
API type alone is not sufficient to uniquely identify the Web Bean component to inject into a Java-based client.
Thus, the client must distinguish the particular component it requires using a binding annotation. The Web
Beans container inspects the binding annotations and type of the injected attribute to determine the Web Bean
instance to be injected.

2.5.1. Defining binding annotations

A binding annotation is a Java annotation defined as @Target({METHOD, FIELD, PARAMETER, TYPE}) and
@Retention(RUNTIME). All binding annotations must specify the @BindingType meta-annotation.

For example:

@BindingType
@Retention(RUNTIME)
@Target({METHOD, FIELD, PARAMETER, TYPE})
public @interface Synchronous {}

@BindingType
@Retention(RUNTIME)
@Target({METHOD, FIELD, PARAMETER, TYPE})
public @interface Asynchronous {}

The Web Beans component model

JSR-299 Early Draft Review 13

A binding annotation may define annotation members.

@BindingType
@Retention(RUNTIME)
@Target({METHOD, FIELD, PARAMETER, TYPE})
public @interface PayBy {

PaymentMethod value();
}

2.5.2. Declaring the binding annotation types for a component using an-
notations

A binding annotation is declared by annotating the implementation class or producer method. For example, the
following Web Beans both implement the API type PaymentProcessor, but specify different binding annota-
tions:

@Synchronous @Component
class SynchronousPaymentProcessor implements PaymentProcessor { ... }

@Asynchronous @Component
class AsynchronousPaymentProcessor implements PaymentProcessor { ... }

A producer method may also declare binding annotations:

@Component
@Stateless
public class ShopBean implements Shop {

@Produces @All
public List<Product> getAllProducts() { ... }

@Produces @WishList
public List<Product> getWishList() { }

@Produces @ShoppingCart
public List<Product> getShoppingCart() { }

}

Any Web Bean component may declare multiple binding annotations.

2.5.3. Declaring the binding annotation types for a component using XML

If the Web Beans component is declared in web-beans.xml, binding types may be specified using <binding>:

<component>
<class>org.mydomain.SynchronousPaymentProcessor</class>
<type>javax.webbeans.Component</type>
<binding>org.mydomain.Synchronous</binding>

</component>

If a producer method expression is specified, all binding types must be explicitly specified by <binding> ele-
ments.

Otherwise, if no <binding> element is specified, the binding annotations that appear on the implementation
class are used. If a <binding> element does appear, the binding annotations appearing on the implementation
class are ignored and all binding types must be explicitly specified by <binding> elements.

The Web Beans component model

JSR-299 Early Draft Review 14

2.5.4. Using binding annotations on injected fields

Binding annotations are applied to injected fields to determine the component that is injected, according to the
typesafe resolution algorithm defined in Section 3.1.1, “Typesafe resolution algorithm”.

For example, when the Web Beans container encounters the following injected field, an instance of Synchron-
ousPaymentProcessor will be injected:

@Synchronous PaymentProcessor paymentProcessor;

But in this case, an instance of AsynchronousPaymentProcessor will be injected:

@Asynchronous PaymentProcessor paymentProcessor;

For the case of producer methods, the producer method that is called depends upon the component identified by
the binding annotations:

@All List<Product> catalog;

@WishList List<Product> wishList;

@ShoppingCart List<Product> cart;

2.5.5. Using binding annotations on method parameters

Binding annotations are applied to method parameters to determine the component that is passed when the
method is called by the container, according to the typesafe resolution algorithm.

For example, when the Web Beans container encounters the following producer method, an instance of Syn-

chronousPaymentProcessor will be passed to the first parameter and an instance of AsynchronousPaymentPro-
cessor will be passed to the second parameter:

@Produces @Current
PaymentProcessor getPaymentProcessor(@Synchronous PaymentProcessor sync,

@Asynchronous PaymentProcessor async) {
return isSynchronous() ? sync : async;

}

2.5.6. The @New binding annotation

The built-in binding annotation @New may be applied to any injection point declared with a concrete Java type.
It may not appear in conjunction with any other binding annotation. It may not be applied to an injection point
of abstract or interface type. No component defined using annotations or XML may declare @New as a binding
annotation.

When @New appears on an injection point, a component is implicitly defined with scope @Dependent, compon-
ent type @Component, @New as the only binding annotation, no component name, and where the API type and
implementation class are both the type of the injection point.

2.6. Component scopes

All Web Bean components have a scope. The scope of a Web Bean component determines the lifecycle of its

The Web Beans component model

JSR-299 Early Draft Review 15

instances, and which instances of the component are visible to instances of other components.

The set of scope types is extensible.

2.6.1. Built-in scope types

There are several standard scope types defined by Web Beans. The @RequestScoped, @ApplicationScoped and
@SessionScoped annotations represent the standard scopes defined by the Java Servlets specification. The
@ConversationScoped annotation represents the Web Beans conversation scope defined in Section 5.3.4,
“Conversation context lifecycle”. In addition, there is the @Dependent pseudo-scope for dependent objects, as
defined in Section 5.2, “Dependent pseudo-scope”.

2.6.2. Defining new scope types

A Web Beans scope type is a Java annotation defined as @Target({TYPE, METHOD}) and
@Retention(RUNTIME). All scope types must also specify the @ScopeType meta-annotation.

For example, the following annotation declares a "method scope":

@ScopeType
@Target({TYPE, METHOD})
@Retention(RUNTIME)
public @interface MethodScoped {}

2.6.3. Declaring the component scope using annotations

The component's scope is defined by annotating the implementation class or producer method with a scope
type.

A Web Bean implementation class or producer method may specify at most one scoping annotation. If an im-
plementation class or producer method specifies multiple scoping annotations, an exception is thrown by the
Web Beans container at startup time.

The following examples demonstrate the use of built-in scope types:

@ConversationScoped
@Component
public class ProductList implements DataModel { ... }

@Component
@Stateless
public class ShopBean implements Shop {

@Produces @WishList @SessionScoped
public List<Product> getWishList() { }

@Produces @ShoppingCart @ConversationScoped
public List<Product> getShoppingCart() { }

}

Likewise, a Web Bean with the custom method scope may be declared by annotating it with the @MethodScoped

annotation:

@MethodScoped
@Component
public class Message {

The Web Beans component model

JSR-299 Early Draft Review 16

...
}

2.6.4. Declaring the component scope using XML

If the Web Beans component is declared in web-beans.xml, the scope may be specified using <scope>:

<component>
<class>org.mydomain.ProductList</class>
<type>javax.webbeans.Component</type>
<scope>javax.webbeans.ConversationScoped</scope>

</component>

If an implementation class with a scope type annotation is specified and if no <scope> element is explicitly spe-
cified, the scope defined by the scope type annotation is used.

2.6.5. Default component scopes

When no scope is explicitly declared by annotating the implementation class or by the <scope> element, the
scope is defaulted.

Open issue: should the default be @Dependent, or @RequestScoped? If we make @RequestScoped the default,
we should rename @RequestScoped to @DefaultScoped.

If a producer method does not explicitly declare a scope, the scope defaults to the @Dependent pseudo-scope.

Stateless session beans always belong to the @Dependent pseudo-scope, and may not specify any other scoping
annotation.

2.7. Component names

Almost all Web Bean components have a component name. A Web Bean component may be referred to by its
component name in Unified EL expressions. A valid component name is a period-separated list of valid EL
identifiers.

In certain circumstances, multiple components may share the same name.

2.7.1. Default component names

By default, the name of a component defaults to the unqualified class name of the Web Beans implementation
class, after converting the first character to lower case.

For example, the default component name of the ProductList component is productList.

A producer method component name defaults to the method name, unless the method follows the JavaBeans
property getter naming convention, in which case the name defaults to the JavaBeans property name.

For example, this producer method component is named products:

@Component
@Stateless
public class ShopBean implements Shop {

@Produces

The Web Beans component model

JSR-299 Early Draft Review 17

public List<Product> getProducts() { ... }

}

2.7.2. Declaring the component name using annotations

To customize the name of a Web Bean, the @Named annotation is applied to the bean implementation class or
producer method. This Web Bean is named products:

@Component
@Named("products")
public class ProductList implements DataModel { ... }

The @Named annotation is a binding annotation.

Open issue: this allows typesafe injection by name, but only if the component specifies @Named explicitly.
Should we allow injection by name for components with defaulted names?

2.7.3. Declaring the component name using XML

If the Web Beans component is declared in web-beans.xml, the name declared by the implementation class
may be specified using <name>:

<component>
<class>org.mydomain.ProductList</class>
<name>products</name>

</component>

If a producer method expression is specified, and if no <name> is explicitly specified, the component has no
name.

If an implementation class with a @Named annotation is specified, and if no <name> element is explicitly spe-
cified, the name specified by the @Named annotation is used.

2.7.4. Using component names in EL

The name may be used in unified EL expressions, for example:

<h:outputText value="#{products.total}"/>

2.8. XML based configuration

This functionality is yet to be specified.

2.9. Additional examples

This example shows a full XML component declaration:

<component>
<class>com.mydomain.myapp.AsynchronousCreditCardPaymentProcessor</class>
<type>javax.webbeans.Component</type>
<scope>javax.webbeans.SessionScoped</scope>

The Web Beans component model

JSR-299 Early Draft Review 18

<binding>com.mydomain.myapp.PayBy(com.mydomain.myapp.PaymentType.CREDIT_CARD)</binding>
<binding>com.mydomain.myapp.Asynchronous</binding>

</component>

This example shows use of annotations defined by the Common Annotations and EJB specifications.

@SessionScoped @Component
@Interceptors(MyTransactionInterceptor.class)
public class ShoppingCart {

private User customer;
private Order order;
private @Resource Connection connection;
private @EJB PaymentProcessor paymentProcessor;
private @PersistenceContext(type=EXTENDED) EntityManager entityManager;

void setUser(@Current User customer) {
this.customer = customer;

}

@PostConstruct void retrieveOrder() {
order = entityManager.find(Order.class, customer.getId());

}

...

@PreDestroy void updateOrder() {
entityManager.merge(order);

}

@Remove @Destroys void destroy() {}

}

The Web Beans component model

JSR-299 Early Draft Review 19

Chapter 3. Injection and EL resolution
In general, an API type or component name does not uniquely identify a Web Bean component. When resolv-
ing a component at an injection point, the Web Beans container considers API type, binding annotations and
component type precedence. When resolving a component name in EL, the container considers name, scope
precedence and component type precedence. This allows components developers to decouple type from imple-
mentation.

The Container interface provides operations for resolving a component by type or name.

3.1. Instance resolution

When injecting a component instance, the Web Beans container uses the following algorithm. Each time an in-
stance must be injected, the Web Beans container must:

• Identify the component by calling Container.resolveByType(), passing the type and binding annotations
of the injection point.

• If necessary, instantiate a scope adaptor for the resulting component. In this case, the scope adaptor is the
object that is injected.

• Otherwise, if no scope adaptor is required:

• obtain the context object by calling Container.getContext(), passing the component scope.

• Finally, obtain the current instance of the component by calling Context.get(), passing the Component

object representing the component. The object returned by get() will be injected.

3.1.1. Typesafe resolution algorithm

The process of matching a Web Bean component to an injection point is called typesafe resolution. The Web
Beans container considers API type, binding annotations, and component precedences when resolving a com-
ponent to be injected to an injection point.

Typesafe resolution usually occurs at container initialization time, allowing the container to warn the user if
components have unsatisfied dependencies.

The resolveByType() method of the Container interface returns the result of the typesafe resolution.

public interface Container {

public <T> Component<T> resolveByType(Class<T> apiType, Annotation... bindingTypes);

...

}

For example:

Component<PaymentProcessor> component =
container.resolveByType(PaymentProcessor.class, new Synchronous() {});

JSR-299 Early Draft Review 20

The following algorithm must be used by the Web Beans container when resolving a component by type:

• First, the container inspects the type of the injection point and identifies the set of matching enabled com-
ponents which have this type as an API type.

• Next, the container inspects the annotations which appear on the injection point, and identifies the binding
annotations. The container narrows the set of matching components to just those which (a) declare all of the
binding annotations specified at the injection point and (b) specify the same annotation member values for
all binding annotations specified at the injection point where the member is not annotated @NonBinding.

• If at least one remaining component declares only the binding annotations specified at the injection point,
the container narrows the set of components to those which declare only those binding annotations.

• Next, the container examines the component types of the matching components, and narrows the matching
set to the components with the highest precedence component type that occurs in the set. If exactly one
component remains, the resolution results in that component.

• Otherwise, an exception is thrown by the container.

Open issue: these rules do not allow overriding of several components with the same API type but different
binding annotations with a single component that implements the API and supports all the same bindings, due
to the third rule. Is this an important feature that should be supported?

3.1.1.1. Binding annotations with members

According to the algorithm above, binding annotations with members are supported:

@PayBy(CHEQUE) @Component
class ChequePaymentProcessor implements PaymentProcessor { ... }

@PayBy(CREDIT_CARD) @Component
class CreditCardPaymentProcessor implements PaymentProcessor { ... }

Then only ChequePaymentProcessor is a candidate for injection to the following attribute:

@PayBy(CHEQUE) PaymentProcessor paymentProcessor;

On the other hand, only CreditCardPaymentProcessor is a candidate for injection to this attribute:

@PayBy(CREDIT_CARD) PaymentProcessor paymentProcessor;

The container calls the equals() method of the annotation member value to compare values.

An annotation member may be excluded from consideration using the @NonBinding annotation.

@BindingType
@Retention(RUNTIME)
@Target({METHOD, FIELD, PARAMETER, TYPE})
public @interface PayBy {

PaymentMethod value();
@NonBinding String comment();

}

3.1.1.2. Multiple binding annotations

Injection and EL resolution

JSR-299 Early Draft Review 21

According to the algorithm above, a Web Bean implementation class or producer method may declare multiple
binding annotations:

@Synchronous @PayBy(CHEQUE) @Component
class ChequePaymentProcessor implements PaymentProcessor { ... }

Then ChequePaymentProcessor would be considered a candidate for injection into any of the following attrib-
utes:

@PayBy(CHEQUE) PaymentProcessor paymentProcessor;

@Synchronous PaymentProcessor paymentProcessor;

@Synchronous @PayBy(CHEQUE) PaymentProcessor paymentProcessor;

A component must declare all of the binding annotations that are specified at the injection point to be con-
sidered a candidate for injection. If more than one component is a candidate, components which declare exactly
the same binding annotations that are specified at the injection point are preferred over other candidates.

3.1.2. Scope adaptors

The Web Beans container must guarantee that when any component instance invokes an injected component in-
stance, the invocation is always processed by the current instance (see Section 5.1, “Contexts”) of the injected
component. In certain scenarios, for example if a request scoped component is injected into a session scoped
component, this rule requires that the container must inject a scope adaptor object. A scope adaptor implements
or extends the type of the injected attribute and delegates all method calls to the current instance of the injected
component.

If a scope adaptor is not required in order to enforce the rule, the Web Beans container is not required to inject
an adaptor, and may directly inject the current instance.

3.2. EL name resolution

The Web Beans container provides a Unified EL ELResolver. When this resolver is called with a null base ob-
ject, the container:

• Identifies the component by calling Container.resolveByName(), passing the name.

• Obtains the context object by calling Container.getContext(), passing the component scope.

• Obtains an instance of the component by calling Context.get(), passing the Component instance represent-
ing the component.

Open issue: Web Beans supports qualified names. The ELResolver implements support for qualified names in
Unified EL. How exactly does this work?

3.2.1. Name resolution algorithm

The process of matching a Web Bean component to a name used in EL is called name resolution. Since there is
no typing information available in EL, the container may consider only component names.

Injection and EL resolution

JSR-299 Early Draft Review 22

The resolveByName() method of the Container interface performs name resolution.

public interface Container {

public Component resolveByName(String name);

...

}

For example:

Component component = container.resolveByName("paymentProcessor");

The following algorithm must be used by the Web Beans container when resolving a component by name:

• The container identifies the set of matching enabled components which have a component name matching
the name used in the EL expression. If no enabled component has this name then the result of resolution is a
null value.

• Next, the container examines the component types of the matching components and narrows the matching
set to the components with the highest precedence component type that occurs in the set. If exactly one
component remains, the resolution results in that component.

• Otherwise, an exception is thrown by the container.

The name resolution algorithm usually occurs at runtime.

3.2.2. Integration with Unified EL

In a Servlet or JSF application, the Web Beans container must register the ELResolver with the web container.

If WEB-INF/web.xml does not contain any <servlet> elements that reference
javax.faces.webapp.FacesServlet, the Web Beans container will register the ELResolver by calling JspAp-

plicationContext.addELResolver() at initialization time.

Otherwise, the Web Beans container uses standard JSF APIs to register the ELResolver with JSF at initializa-
tion time.

Injection and EL resolution

JSR-299 Early Draft Review 23

Chapter 4. Component lifecycle
The lifecycle of a Web Bean component instance is managed by the Web Beans context object associated with
the component's scope. The context implementation collaborates with the Web Beans container via the Context

and Component interfaces to create and destroy Web Bean component instances.

The actual mechanics of component creation and destruction varies according to what kind of component it is.
To create a session bean, the container obtains an instance from the EJB container. To create a producer method
component instance, the container calls the producer method. Otherwise, the container calls the component
constructor.

Open issue: we should also open up an SPI to allow frameworks to register a custom Lifecycle strategy with
the Web Beans container, thereby supporting new kinds of components beyond Java classes, EJBs and produ-
cer methods.

In addition to the capabilities defined by this specification, Web Bean components also support the following
functionality defined by the Common Annotations for the Java Platform and Enterprise JavaBeans specifica-
tions:

• dependency injection via @EJB, @PersistenceContext and @Resource

• JNDI lookup of resource references declared via @Resource and @Resources

• @PostConstruct and @PreDestroy callbacks

• interception, as defined in javax.interceptor

Of course, Web Beans which are also EJB session beans may take advantage of all additional functionality
defined by the EJB specification.

4.1. Instances of producer method components

Any Java object may be returned by a producer method. It is not required that the returned object be an instance
of another Web Bean component. However, if the returned object is not an instance of another Web Bean com-
ponent, the Web Beans container will provide none of the following capabilities:

• injection of other Web Beans

• lifecycle callbacks

• method and lifecycle interception

In the following example, the producer method returns instances of other Web Bean components:

@Component @SessionScoped
public class PaymentStrategyProducer {

private PaymentStrategyType paymentStrategyType;

public setPaymentStrategyType(PaymentStrategyType type) {
paymentStrategyType = type;

}

@Produces @Current
public PaymentStrategy getPaymentStrategy(@CreditCard PaymentStrategy creditCard,

JSR-299 Early Draft Review 24

@Cheque PaymentStrategy cheque,
@Online PaymentStrategy online) {

switch (paymentStrategyType) {
case CREDIT_CARD: return creditCard;
case CHEQUE: return cheque;
case ONLINE: return online;
default: return null;

}
}

}

In this case, the object returned by the producer method has already had its dependencies injected, receives life-
cycle callbacks and has interception enabled.

But in this example, the returned objects are not Web Bean component instances:

@Component @SessionScoped
public class PaymentStrategyProducer {

private PaymentStrategyType paymentStrategyType;

public setPaymentStrategyType(PaymentStrategyType type) {
paymentStrategyType = type;

}

@Produces @Current
public PaymentStrategy getPaymentStrategy() {

switch (paymentStrategyType) {
case CREDIT_CARD: return new CreditCardPaymentStrategy();
case CHEQUE: return new ChequePaymentStrategy();
case ONLINE: return new OnlinePaymentStrategy();
default: return null;

}
}

}

In this case, the object returned by the producer method will not have any dependencies injected by the contain-
er, receives no lifecycle callbacks and does not have interception enabled.

4.2. Component creation

When the Web Beans container injects dependencies or resolves EL names, and there is no existing instance of
the component cached by the context object for the component scope, the context object automatically creates a
new instance of the component by calling Component.create().

public interface Component<T> {

public T create();

...

}

The create() method performs the following tasks, in order:

• object instantiation

• additional injection

Component lifecycle

JSR-299 Early Draft Review 25

• @PostConstruct callback

In addition, any instances of @Dependent components (see Section 5.2, “Dependent pseudo-scope”) that were
created and injected during these phases must be registered for later destruction.

4.2.1. Object instantiation

The mechanism used for object instantiation depends upon whether the Web Bean component is a producer
method component, and upon whether the implementation class is a session bean.

4.2.1.1. Instantiating a component by calling the component constructor

If the Web Bean implementation class is not an EJB, the container instantiates it by calling the component con-
structor.

For each constructor parameter, the container passes the object identified by the instance resolution algorithm.

4.2.1.2. Instantiating an EJB session bean

If the Web Bean implementation class is an EJB session bean, the container instantiates it by looking up the
bean in JNDI.

Open issue: how does it know the JNDI name?

4.2.1.3. Instantiating a component by calling the producer method

If the Web Bean component is a producer method component, the container:

• obtains the current instance of the component which declares the producer method by calling Con-

text.get(), passing the Component object representing that component, then

• invokes the producer method upon the current instance, passing the object identified by the instance resolu-
tion algorithm to each parameter.

The return value of the producer method is the new component instance to be returned by
Component.create().

If the producer method may return a null value, the Component.create() method returns null.

4.2.2. Additional injection

After instantiating the component, the container performs additional injection.

• First, the container initializes the values of any attributes annotated @EJB, @PersistenceContext or
@Resource, as defined in the Common Annotations for the Java Platform and EJB 3.0 specifications. If the
Web Bean is an EJB, the EJB container is responsible for injecting these attributes. Otherwise, the Web
Beans container is responsible for injection of these attributes.

• Next, the container initializes the values of all injected fields. For each injected field, the container sets the
value to the object identified by the instance resolution algorithm.

• Finally, the container calls all injector methods. For each injector method parameter, the container passes

Component lifecycle

JSR-299 Early Draft Review 26

the object identified by the instance resolution algorithm.

Open issue: do we really need to support @PersistenceContext for non-EJB web beans?

The container does not perform additional injection upon a component instance returned by a producer method.
However, if the object returned by the producer method was an instance of some other component, the injection
described above might have already have been performed.

4.2.3. @PostConstruct callback

After all injection has been performed upon a component instance that is not an EJB stateless session bean or a
producer method return value, the @PostConstruct callback occurs. If the Web Bean is an EJB, the EJB con-
tainer is responsible for this callback. Otherwise, the Web Beans container performs this callback, in accord-
ance with the semantics defined by the Common Annotations for the Java Platform specification.

The Web Beans container does not perform the @PostConstruct callback upon a component instance returned
by a producer method. However, if the object returned by the producer method was an instance of some other
component, the @PostConstruct method might have already have been called.

4.2.4. Dependent instances

Any instances of components with @Dependent scope that were created and injected into the newly-created in-
stance during the previous phases must later be destroyed. The container is responsible for registering these de-
pendent instances for later destruction.

The container is permitted to destroy dependent instances at any time if these instances are no longer referenced
by the application (excepting weak, soft and phantom references).

The container is required to destroy dependent instances after the instance upon which they are dependent is
destroyed.

4.3. Component destruction

When a Web Beans context is destroyed, the context object automatically destroys any instances associated
with that context by calling Component.destroy().

public interface Component<T> {

public void destroy(T instance);

...

}

The destroy() method performs the following tasks, in order:

• component remove method or disposal method call

• @PreDestroy callback

• destruction of dependent instances

Component lifecycle

JSR-299 Early Draft Review 27

4.3.1. Component remove method or disposal method call

If the Web Bean component is a producer method component with a disposal method, the disposal method must
be called. Otherwise, if the implementation class is a stateful session bean, the component remove method must
be called to remove the stateful bean.

Open issue: disposal method and component remove method injection caveats.

4.3.1.1. Destroying a stateful session bean instance

If the component implementation class is an EJB stateful session bean, the Web Beans container is responsible
for calling the component remove method. This causes the bean to be removed by the EJB container.

For each parameter of the component remove method, the container passes the object identified by the instance
resolution algorithm.

4.3.1.2. Disposing an instance returned by a producer method

If the Web Bean component is a producer method component, and if there is a disposal method for that com-
ponent, the container:

• obtains the current instance of the component which declares the disposal method by calling Con-

text.get(), passing the Component object representing that component, then

• invokes the disposal method upon the current instance, passing the object identified by the instance resolu-
tion algorithm to each parameter.

4.3.2. @PreDestroy callback

When a component instance that is not an EJB stateless session bean or a producer method return value is des-
troyed, the @PreDestroy callback occurs. If the Web Bean is an EJB, the EJB container is responsible for this
callback. Otherwise, the Web Beans container performs this callback, as defined in the Common Annotations
for the Java Platform specification.

The Web Beans container does not explicitly perform @PreDestroy callbacks upon a component instance re-
turned by a producer method. However, if the object returned by the producer method was an instance of some
other component, the @PreDestroy method might still be called.

4.3.3. Destruction of dependent instances

After an instance is destroyed, the container must destroy all dependent instances of that instance.

4.4. Interceptors

Web Beans components support interception as defined by the package javax.interceptor. Interceptors may
be bound to a component using the javax.interceptor.Interceptors annotation, or by using a Web Beans
interceptor binding.

4.4.1. Support for @Interceptors

Component lifecycle

JSR-299 Early Draft Review 28

Any Web Bean may declare interceptors using @Interceptors. If the Web Bean is an EJB session bean, the
EJB container is responsible for calling interceptors declared using @Interceptors. Otherwise, the Web Beans
container is responsible for calling the interceptors. In both cases, the semantics are fully defined by the EJB
specification.

Interceptors declared using @Interceptors are called before interceptors declared using Web Beans interceptor
bindings.

4.4.2. Interceptor bindings

As an extension to the functionality defined by the javax.interceptor package, Web Beans provides an al-
ternative method of binding interceptors to components. Even when interceptors are bound to components us-
ing this mechanism, the interception semantics are defined by the EJB specification.

Open issue: we need to feed this back to the EJB group, so that this functionality is available for all EJB ses-
sion beans.

Open issue: can interceptors have Web Beans components injected? Can they have a scope?

An interceptor binding type is a Java annotation defined as @Target({TYPE, METHOD}) or @Target(TYPE) and
@Retention(RUNTIME). All interceptor binding types must also specify the @InterceptorBindingType meta-
annotation.

@InterceptorBindingType
@Target({TYPE, METHOD})
@Retention(RUNTIME)
public @interface Transactional {}

A Web Beans interceptor is any interceptor that complies with the EJB specification and is also annotated
@Interceptor. Web Beans interceptors must declare at least one interceptor binding type:

@Transactional @Interceptor
public class TransactionInterceptor {

@AroundInvoke
public Object manageTransaction(InvocationContext ctx) { ... }

}

A Web Beans interceptor for component lifecycle events may be bound to a component by annotating the im-
plementation class with the interceptor binding types declared by the interceptor.

A Web Beans interceptor for method invocations may be bound to a component method by annotating the com-
ponent method or implementation class with the interceptor binding types declared by the interceptor.

Open issue: what happens when an interceptor for component lifecycle events is bound at the method level?

In the following example, the TransactionInterceptor will be applied at the class level:

@Transactional @Component
public class ShoppingCart { ... }

In this example, the TransactionInterceptor will be applied at the method level:

@Component
public class ShoppingCart {

Component lifecycle

JSR-299 Early Draft Review 29

@Transactional
public void placeOrder() { ... }

}

Web Beans interceptors may be enabled or disabled at deployment time. Disabled interceptors are never called
at runtime.

Multiple interceptor classes may all be bound to the same interceptor binding type or types.

4.4.2.1. Interceptors with multiple binding types

An interceptor class may specify multiple interceptor binding types, in which case the interceptor will be ap-
plied only to components with an implementation class that also declares all the binding types, and to compon-
ent methods where all the binding types appear on either the method or implementation class.

Consider the following interceptor:

@Transactional @Action @Interceptor
public class TransactionalActionInterceptor {

@AroundInvoke
public void aroundInvoke() { ... }

}

This interceptor will be bound to all methods of this component:

@Transactional @Action @Component
public class ShoppingCart { ... }

The interceptor will also be bound to the placeOrder() method of this component:

@Transactional @Component
public class ShoppingCart {

@Action
public void placeOrder() { ... }

}

4.4.2.2. Interceptor binding types with members

Interceptor binding types may have annotation members. The member value is used by the container to choose
an interceptor.

@InterceptorBindingType
@Target({TYPE, METHOD})
@Retention(RUNTIME)
public @interface Transactional {

boolean requiresNew() default false;
}

@Transactional(requiresNew=true) @Interceptor
public class RequiresNewTransactionInterceptor {

@AroundInvoke
public Object manageTransaction(InvocationContext ctx) { ... }

}

Component lifecycle

JSR-299 Early Draft Review 30

@Transactional(requiresNew=true) @Component
public class ShoppingCart { ... }

Annotation member values are compared using equals().

An annotation member may be excluded from consideration using the @NonBinding annotation.

@InterceptorBindingType
@Target({TYPE, METHOD})
@Retention(RUNTIME)
public @interface Transactional {

@NonBinding boolean requiresNew() default false;
}

4.4.2.3. Interceptor binding types with additional interceptor bindings

An interceptor binding type may be applied to another interceptor binding type. In this case, the interceptors
bound to the first type will be also be bound to the second type.

@InterceptorBindingType
@Target({TYPE, METHOD})
@Retention(RUNTIME)
@Transactional(requiresNew=true)
public @interface Action {}

@Action @Component
public class ShoppingCart { ... }

4.4.2.4. Declaring interceptor bindings using XML

Additional interceptor bindings may be declared in XML:

<interceptor>
<class>com.mydomain.framework.TransactionInterceptor</class>
<binding>com.mydomain.framework.Action(transactional=true)</binding>

</interceptor>

4.4.3. Interceptor enablement and ordering

By default, interceptors bound via interceptor binding types are not enabled. An interceptor class must be expli-
citly enabled by listing it in the <interceptors> element in web-beans.xml.

<interceptors>
<interceptor>com.mydomain.framework.TransactionInterceptor</interceptor>
<interceptor>com.mydomain.framework.LoggingInterceptor</interceptor>

</interceptors>

The order of the <interceptor> declarations determines the interceptor ordering. Interceptors which occur
earlier in the list are called first.

If the <interceptors> element is specified in more than one web-beans.xml document, an exception is thrown
by the Web Beans container at initialization time.

4.5. Events

Component lifecycle

JSR-299 Early Draft Review 31

Web Beans components may produce and consume events. This facility allows components to interact in a
completely decoupled fashion, with no compile-time dependency between the two components.

4.5.1. Raising an event

The Container interface provides a method for raising events:

public interface Container {

public void raiseEvent(Object event, Annotation... bindings);

}

The first argument is the event object:

public void login() {
...
container.raiseEvent(new LoggedInEvent(user));

}

The remaining arguments are optional instances of event binding types:

public void login() {
User user = ...;
container.raiseEvent(new LoggedInEvent(user), new Admin() {});

}

An event binding type is a Java annotation defined as @Target(PARAMETER) and @Retention(RUNTIME). All
event binding types must also specify the @EventBindingType meta-annotation.

@EventBindingType
@Target(PARAMETER)
@Retention(RUNTIME)
public @interface Admin {}

4.5.2. Observer methods

An observer method is a non-static method of a Web Bean component with a parameter annotated @Observes.
This parameter is called the event parameter. If the component implementation class is an EJB session bean,
the observer method must be a business method of the session bean.

public void afterLogin(@Observes LoggedInEvent event) { ... }

If a method has more than one parameter annotated @Observes, an exception is thrown by the container.

When searching for observer methods for an event, the container considers the event parameter type, and event
binding type annotations that appear on the event parameter:

public void afterAdminLogin(@Observes @Admin LoggedInEvent event) { ... }

There may be arbitrarily many observer methods with the same event parameter type and event binding type
annotations.

An observer method may declare additional parameters, which may specify binding types. Any event binding

Component lifecycle

JSR-299 Early Draft Review 32

types on these additional parameters will be ignored.

public void afterLogin(@Observes LoggedInEvent event, @Current User user) { ... }

When an event is raised by the application, the container determines the observer methods for that event.

• If the observer method is a transactional observer and there is currently a JTA transaction in progress, the
container registers the observer for invocation during the transaction completion phase. At the appropriate
point during the completion phase of the transaction, the container invokes the observer method.

• Otherwise, the container calls the observer method immediately.

To call an observer method, the container:

• obtains the current instance of the component which declares the observer method, by calling Con-

text.get(), passing the Component object representing that component, then

• invokes the observer method on the current instance, passing the event object to the event parameter and us-
ing the instance resolution procedure to determine a value for each of the other parameters.

Observer methods may throw exceptions:

• If the observer method is a transactional observer, the exception is caught by the container.

• Otherwise, the exception aborts processing of the event. No other observers of that event will be called. The
raiseEvent() method throws an ObserverException which wraps the exception.

Open issue: declaring observer methods using XML - how do we specify the event parameter?

4.5.3. Observer resolution

When searching for observers for an event, the container searches for observer methods which satisfy the fol-
lowing rules:

• The event object is assignable to the event parameter type.

• For each event binding type that appears on the event parameter declaration, (a) an instance of the type
must have been passed to raiseEvent() and (b) any member values must match the member values of the
instance passed to raiseEvent().

4.5.3.1. Event binding annotations with members

An event binding type may have annotation members:

@EventBindingType
@Target(PARAMETER)
@Retention(RUNTIME)
public @interface Role {

String value();
}

Consider the following event:

Component lifecycle

JSR-299 Early Draft Review 33

public void login() {
final User user = ...;
container.raiseEvent(new LoggedInEvent(user),

new Role() { public String value() { return user.getRole(); });

}

Then the following observer method will always be notified of the event:

public void afterLogin(@Observes LoggedInEvent event) { ... }

Whereas this observer method may or may not be notified, depending upon the value of user.getRole():

public void afterAdminLogin(@Observes @Role("admin") LoggedInEvent event) { ... }

The container uses equals() to compare event binding type member values.

4.5.3.2. Multiple event binding annotations

An observer method may have multiple event binding annotations:

public void afterDocumentUpdatedByAdmin(@Observes @Updated @ByAdmin Document doc) { ... }

Then this observer method will only notified if both the event binding types are specified when the event is
raised:

container.raiseEvent(document, new Updated() {}, new ByAdmin() {});

Other, less specific, observers will also be notified of this event:

public void afterDocumentUpdated(@Observes @Updated Document doc) { ... }

public void afterDocumentEvent(@Observes Document doc) { ... }

4.5.4. Conditional observers

Conditional observers are observer methods which are notified of an event only if an instance of the component
that defines the observer method already exists in the current context. Conditional observers are specified by
annotating the event parameter with the @IfExists annotation.

public void refreshOnDocumentUpdate(@IfExists @Observes @Updated Document doc) { ... }

4.5.5. Transactional observers

Transactional observers are observer methods which receive event notifications during the before or after com-
pletion phase of the transaction in which the event was raised. If no transaction is in progress when the event is
raised, they are notified at the same time as other observers.

Note: this functionality is still under discussion by the expert group.

Transactional observers are specified by annotating the event parameter of the observer method.

• The @AfterTransactionCompletion annotation specifies that an observer method should be called during

Component lifecycle

JSR-299 Early Draft Review 34

the after completion phase.

• The @AfterTransactionSuccess annotation specifies that an observer method should be called during the
after completion phase, only when the transaction completed successfully.

• The @BeforeTransactionCompletion annotation specifies that an observer method should be called during
the before completion phase.

void onDocumentUpdate(@Observes @AfterTransactionSuccess @Updated Document doc) { ... }

Component lifecycle

JSR-299 Early Draft Review 35

Chapter 5. The Web Beans context model
Web Bean component instances are bound to a context. The context implementation determines the instance li-
fecycle and visibility to other component instances.

5.1. Contexts

A context is a mapping from enabled Web Bean components to instances of those components. This mapping
may be associated with a single thread or with a set of threads. The context associated with the current thread is
called the current context.

The Context interface provides operations for accessing the entries in the current context.

The get() operation returns a component instance for the given Web Bean component.

public interface Context {

public <T> T get(Component<T> component, boolean create);

...

}

For example:

Object instance = context.get(component, true);

If there is an instance already associated with the current context it is returned by get(). Otherwise, if the value
of the create parameter is false, get() returns a null value. Or, if the value of the create parameter is true,
the Context implementation creates a new instance of the given component by calling Component.create()

and returns the new instance.

The instance returned by get() is called the current instance of the component for the calling thread.

The get() method may not return a null value, unless Component.create() returns null.

(Note that for a @Dependent-scoped component, the "current" instance depends not only upon the thread, but
also upon the instance of the component that owns the dependent instance.)

The remove() operation must destroy the current instance of a component by passing the instance to the des-

troy() method of the Component object representing the component and removing the instance from the con-
text:

public interface Context {

public <T> void remove(Component<T> component);

...

}

For example:

context.remove(instance);

JSR-299 Early Draft Review 36

A destroyed instance must not subsequently be returned by the get() method.

If the given instance is not associated with the current context, when the remove() method is called, an excep-
tion should be thrown by the Context implementation.

5.1.1. Inactive contexts

At a particular point in the execution of the program, a scope may be inactive with respect to the current thread.
In this case, any invocation of get() or remove() from the current thread upon the Context object for that
scope should result in a ContextNotActive exception.

5.1.2. Context destruction

At certain points in the execution of the program, the context associated with the current thread is destroyed.
When a context is destroyed, the Context implementation must destroy all component instances associated with
the current context by passing the instance to the destroy() method of the Component object representing the
component. A destroyed instance must not subsequently be returned by the get() method.

5.1.3. Pseudo-scopes

In general, Context implementations should obey the following rule:

Suppose components X and Y both inject component Z. Then if x is the current instance of X, and y is the cur-
rent instance of Y, then both x and y refer to the same injected instance of Z.

However, this rule is not required by the Web Beans specification. When this rule is violated, we say that the
scope type of Z is a pseudo-scope.

5.2. Dependent pseudo-scope

The @Dependent scope type is a pseudo-scope. Components declared with scope type @Dependent behave dif-
ferently to components with other built-in scope types.

When a component is declared to have @Dependent scope:

• No injected instance of the component is ever shared between other component instances.

• Any injected instance of the component is bound to the lifecycle of the component into which it is injected.

Every Web Bean component instance has its own dependent object context. This context is bound to the com-
ponent instance. The dependent object context must be destroyed by the Web Beans container when the associ-
ated component instance is destroyed.

The @Dependent scope is inactive except when the container is creating or destroying an instance or injecting
its dependencies. A component instance may access its own dependent object context from the component con-
structor, the component remove method, injector methods, @PostConstruct methods, @PreDestroy methods
and interceptors for any of these methods. A producer method component's dependent object context is access-
ible from the producer method, disposal method and interceptors for these methods.

The Web Beans context model

JSR-299 Early Draft Review 37

5.3. Context management for built-in scopes

For each of the built-in scopes, contexts are automatically managed by the Web Beans container.

Open issue: context management for RMI calls, EJB timer methods, message driven beans, etc, is yet to be
defined.

5.3.1. Request context lifecycle

The Web Beans request context is a built-in context for the built-in scope type
javax.webbeans.RequestScoped. For any servlet request, this context is automatically managed by the Web
Beans container. The request context is active during the service() method of any servlet in the web applica-
tion.

The request context is destroyed at the end of the web request, after the servlet service() method returns.

5.3.2. Session context lifecycle

The Web Beans session context is a built-in context for the built-in scope type
javax.webbeans.SessionScoped. For any servlet request, this context is automatically managed by the Web
Beans container. The session context is active during the service() method of any servlet in the web applica-
tion.

The session context is propagated between requests that occur in the same HTTP servlet session.

The session context is destroyed when the HTTPSession is invalidated or times out.

5.3.3. Application context lifecycle

The Web Beans application context is a built-in context for the built-in scope type
javax.webbeans.ApplicationScoped. For any servlet request, this context is automatically managed by the
Web Beans container. The application context is active during the service() method of any servlet in the web
application.

The application context is shared between all requests to the same web application context.

The application context is destroyed when the web application context is destroyed.

5.3.4. Conversation context lifecycle

The Web Beans conversation context is a built-in context for the built-in scope type
javax.webbeans.ConversationScoped. For any JSF request, this context is automatically managed by the Web
Beans container, according to the following rules:

• For a JSF faces request, the context is active from the beginning of the apply request values phase, until the
end of the render response phase

• For a JSF non-faces request, the context is active during the render response phase

A conversation context provides access to state associated with a particular conversation. Every JSF request has

The Web Beans context model

JSR-299 Early Draft Review 38

an associated conversation. This association is managed automatically by the Web Beans container according
to the following rules:

• Any JSF request has exactly one associated conversation

• The conversation associated with a JSF request is determined at the end of the restore view phase and does
not change during the request

Any conversation is in one of two states: transient or long-running.

• By default, a conversation is transient

• A transient conversation may be marked long-running by calling Conversation.begin()

• A transient conversation may be marked transient by calling Conversation.end()

javax.webbeans.Conversation is a built-in component and an instance may be obtained by injection.

If the conversation associated with the current JSF request is in the transient state at the end of a JSF request, it
is destroyed, and the associated conversation context object is also destroyed.

If the conversation associated with the current JSF request is in the long-running state at the end of a JSF re-
quest, it is not destroyed. Instead, it may be propagated to other requests according to the following rules:

• The long-running conversation context associated with a request that renders a JSF view is automatically
propagated to any faces request (JSF form submission) that originates from that rendered page

• The long-running conversation context associated with a request that results in a JSF redirect (via a naviga-
tion rule) is automatically propagated to the resulting non-faces request, and to any other subsequent request
to the same URL

When no conversation is propagated to a JSF request, the request is associated with a new transient conversa-
tion.

All long-running conversations are scoped to a particular HTTP servlet session and may not cross session
boundaries.

In the following cases, a propagated long-running conversation cannot be restored and reassociated with the re-
quest:

• When the HTTP servlet session is invalidated, all long-running conversation contexts created during the
current session are destroyed.

• The Web Beans implementation is permitted to arbitrarily destroy any long-running conversation that is as-
sociated with no current JSF request.

If the propagated conversation cannot be restored, the request is associated with a new transient conversation.

Open issue: allow the request to be blocked if the conversation cannot be restored.

The Web Beans container ensures that a long-running conversation may be associated with at most one request
at a time, by blocking or rejecting concurrent requests.

Open issue: define a mechanism for "blocking" requests. For example, allow the request to be redirected.

The Web Beans context model

JSR-299 Early Draft Review 39

5.4. Context management for custom scopes

A custom implementation of Context may be associated with any scope type at any point in the execution of a
Web Beans application, by calling Container.addContext().

public interface Container {

public void addContext(Class<Annotation> scopeType, Context context);

...

}

For example:

container.addContext(MethodScoped.class, new MethodContext());

During instance or EL name resolution, the Web Beans container must call Container.getContext() to re-
trieve the context object associated with the component scope. If no context object is associated with the scope,
getContext() throws a ContextNotActive exception.

public interface Container {

public Context getContext(Class<Annotation> scopeType);

...

}

The Web Beans context model

JSR-299 Early Draft Review 40

Chapter 6. Transactions and persistence
The Web Beans container provides transaction and persistence context management which is aware of the con-
versation and lifecycle of the web request:

• In a JSF environment, the Web Beans container manages the lifecyle of the Web Beans transaction context,
a JTA transaction tied to the JSF lifecycle.

• Web Beans provides JPA persistence contexts scoped to the Web Beans conversation.

This model supports efficient optimistic transaction processing in a JSF environment.

6.1. Transaction management

This functionality is yet to be specified.

6.2. Persistence context management

This functionality is yet to be specified.

JSR-299 Early Draft Review 41

Chapter 7. Validation and databinding
Web Beans integrates with JSF and the functionality defined by the Bean Validation specification, allowing
Web Bean components to declare model-based validation constraints, and have those constraints validated by
JSF.

This functionality is yet to be specified.

JSR-299 Early Draft Review 42

Chapter 8. Packaging and configuration
The Web Beans container automatically discovers Web Bean components deployed in EAR or WAR archives.

8.1. Web Bean component discovery

Web Bean component discovery is the process of determining:

• what components exist in the deployment archive

• which components are enabled for this deployment

• the precedence of the enabled components

When the Web Beans container is initialized, it considers classes in the web application classpath which are de-
ployed in any of the following locations in the EAR or WAR:

• The WEB-INF/classes directory

• Any EJB JAR listed in an <ejb> element of the EAR's application.xml file which has a META-

INF/web-beans.xml file

• Any JAR in the WEB-INF/lib directory of the WAR which has a META-INF/web-beans.xml file

• Any JAR in the library directory of the EAR which has a META-INF/web-beans.xml file

A Web Beans component exists for every class marked with a component type annotation.

Open issue: Define component discovery rules for other deployment scenarios.

Open issue: Alternatively, the container could discover components in any archive in the web application
classpath (that has a web-beans.xml file). This is a much simpler definition.

In addition, the Web Beans container considers components defined in the following XML documents:

• WEB-INF/web-beans.xml in the WAR

• META-INF/web-beans.xml in the EAR (Open issue: is this needed and can it even be implemented?)

• META-INF/web-beans.xml for any EJB JAR listed in an <ejb> element of the EAR's application.xml file

• META-INF/web-beans.xml for any JAR in the WEB-INF/lib directory of the WAR

• META-INF/web-beans.xml for any JAR in the library directory of the EAR

A Web Beans component exists for every <component> element in any of these web-beans.xml files.

In addition, for every concrete type that appears at an injection point or as a producer method parameter, annot-
ated with the @New binding annotation, a component exists with scope @Stateless, component type
@Component, @New as the only binding annotation, no component name, and where the API type and implement-
ation class are both the given concrete type.

JSR-299 Early Draft Review 43

Finally, a Web Beans component exists for every producer method defined on any component implementation
class.

8.1.1. Enabled component types

The Web Beans container inspects the component type of each existing component to determine whether the
component is enabled for this deployment. A component which is enabled will be available for use at runtime.
If the component is not enabled, an instance cannot be obtained by injection or EL resolution and is never in-
stantiated by the container.

By default, only Web Bean components with the @Standard or @Component component types are enabled. To
enable components with some other component type, a <component-types> element must be included in the
WEB-INF/web-beans.xml file and the component type must be declared using <component-type>.

If a <component-types> element is specified, only the explicitly declared component types are enabled. The
@Standard component type must be declared.

<web-beans>
<component-types>

<component-type>javax.webbeans.Standard</component-type>
<component-type>javax.webbeans.Application</component-type>
<component-type>org.nih.dao.DaoFramework</component-type>
<component-type>au.com.makemoneymoney.backoffice.MelbourneOffice</component-type>
<component-type>au.com.makemoneymoney.test.Mock</component-type>

</component-types>
</web-beans>

If no <component-types> element is specified, only the @Standard and @Component component types are en-
abled.

If the <component-types> element is specified in more than one web-beans.xml document, an exception is
thrown by the Web Beans container at initialization time.

Open issue: conditional enablement of components should be supported, but what should the mechanism be:
isEnabled() method? @Enabled annotation? Component dependencies?

8.1.2. Component type precedence

If a <component-types> element is specified, the order of the <component-type> declarations determines the
component type precedence. Component types which appear later in this list have a higher precedence than
component types which appear earlier. The @Standard component type must appear first and always has the
lowest precedence of any component type.

If no <component-types> element is specified, the @Component component type has a higher precedence than
the @Standard component type.

Open issue: there are many web-beans.xml files, where can this precedence be specified?

Packaging and configuration

JSR-299 Early Draft Review 44

	JSR 299: Web Beans
	Table of Contents
	Chapter 1. Architecture
	1.1. Contracts
	1.2. Supported environments
	1.3. Relationship to other specifications
	1.3.1. Relationship to EJB
	1.3.2. Relationship to JSF
	1.3.3. Relationship to Java Servlets
	1.3.4. Relationship to Common Annotations for the Java Platform

	Chapter 2. The Web Beans component model
	2.1. Component types
	2.1.1. Built-in component types
	2.1.2. Defining new component types
	2.1.3. Declaring the component type of a component using annotations
	2.1.4. Declaring the component type of a component using XML
	2.1.5. Component type enablement and precedence

	2.2. Web Bean implementation class
	2.2.1. Declaring an implementation class using annotations
	2.2.2. Declaring an implementation class using XML
	2.2.3. Component constructors
	2.2.4. Component remove methods
	2.2.5. Injected fields
	2.2.6. Injector methods

	2.3. Producer methods
	2.3.1. Declaring a producer method using annotations
	2.3.2. Declaring a producer method using XML
	2.3.3. Producer method parameters
	2.3.4. Disposal methods

	2.4. Web Bean API types
	2.5. Binding annotations
	2.5.1. Defining binding annotations
	2.5.2. Declaring the binding annotation types for a component using annotations
	2.5.3. Declaring the binding annotation types for a component using XML
	2.5.4. Using binding annotations on injected fields
	2.5.5. Using binding annotations on method parameters
	2.5.6. The @New binding annotation

	2.6. Component scopes
	2.6.1. Built-in scope types
	2.6.2. Defining new scope types
	2.6.3. Declaring the component scope using annotations
	2.6.4. Declaring the component scope using XML
	2.6.5. Default component scopes

	2.7. Component names
	2.7.1. Default component names
	2.7.2. Declaring the component name using annotations
	2.7.3. Declaring the component name using XML
	2.7.4. Using component names in EL

	2.8. XML based configuration
	2.9. Additional examples

	Chapter 3. Injection and EL resolution
	3.1. Instance resolution
	3.1.1. Typesafe resolution algorithm
	3.1.1.1. Binding annotations with members
	3.1.1.2. Multiple binding annotations

	3.1.2. Scope adaptors

	3.2. EL name resolution
	3.2.1. Name resolution algorithm
	3.2.2. Integration with Unified EL

	Chapter 4. Component lifecycle
	4.1. Instances of producer method components
	4.2. Component creation
	4.2.1. Object instantiation
	4.2.1.1. Instantiating a component by calling the component constructor
	4.2.1.2. Instantiating an EJB session bean
	4.2.1.3. Instantiating a component by calling the producer method

	4.2.2. Additional injection
	4.2.3. @PostConstruct callback
	4.2.4. Dependent instances

	4.3. Component destruction
	4.3.1. Component remove method or disposal method call
	4.3.1.1. Destroying a stateful session bean instance
	4.3.1.2. Disposing an instance returned by a producer method

	4.3.2. @PreDestroy callback
	4.3.3. Destruction of dependent instances

	4.4. Interceptors
	4.4.1. Support for @Interceptors
	4.4.2. Interceptor bindings
	4.4.2.1. Interceptors with multiple binding types
	4.4.2.2. Interceptor binding types with members
	4.4.2.3. Interceptor binding types with additional interceptor bindings
	4.4.2.4. Declaring interceptor bindings using XML

	4.4.3. Interceptor enablement and ordering

	4.5. Events
	4.5.1. Raising an event
	4.5.2. Observer methods
	4.5.3. Observer resolution
	4.5.3.1. Event binding annotations with members
	4.5.3.2. Multiple event binding annotations

	4.5.4. Conditional observers
	4.5.5. Transactional observers

	Chapter 5. The Web Beans context model
	5.1. Contexts
	5.1.1. Inactive contexts
	5.1.2. Context destruction
	5.1.3. Pseudo-scopes

	5.2. Dependent pseudo-scope
	5.3. Context management for built-in scopes
	5.3.1. Request context lifecycle
	5.3.2. Session context lifecycle
	5.3.3. Application context lifecycle
	5.3.4. Conversation context lifecycle

	5.4. Context management for custom scopes

	Chapter 6. Transactions and persistence
	6.1. Transaction management
	6.2. Persistence context management

	Chapter 7. Validation and databinding
	Chapter 8. Packaging and configuration
	8.1. Web Bean component discovery
	8.1.1. Enabled component types
	8.1.2. Component type precedence

